Cytokine release syndrome and immune-related pneumonitis associated with tumor progression in a pulmonary pleomorphic carcinoma treated with nivolumab plus ipilimumab treatment: A case report

Kei Kunimasa, MD, PhD, Takako Inoue, MD, Katsunori Matsueda, MD, Takahisa Kawamura, MD, PhD, Motohiro Tamiya, MD, Kazumi Nishino, MD, PhD, Toru Kumagai, MD, PhD

PII: S2666-3643(21)00131-4
DOI: https://doi.org/10.1016/j.jtocrr.2021.100272
Reference: JTOCRR 100272

To appear in: JTO Clinical and Research Reports

Received Date: 11 November 2021
Revised Date: 14 December 2021
Accepted Date: 22 December 2021

This is a PDF file of an article that has undergone enhancements after acceptance, such as the addition of a cover page and metadata, and formatting for readability, but it is not yet the definitive version of record. This version will undergo additional copyediting, typesetting and review before it is published in its final form, but we are providing this version to give early visibility of the article. Please note that, during the production process, errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

© 2021 Published by Elsevier Inc. on behalf of the International Association for the Study of Lung Cancer.
Case Report

Cytokine release syndrome and immune-related pneumonitis associated with tumor progression in a pulmonary pleomorphic carcinoma treated with nivolumab plus ipilimumab treatment: A case report

Kei Kunimasa, MD, PhD¹, Takako Inoue, MD¹, Katsunori Matsueda, MD², Takahisa Kawamura, MD, PhD¹, Motohiro Tamiya, MD¹, Kazumi Nishino, MD, PhD¹, Toru Kumagai, MD, PhD¹

¹ Department of Thoracic Oncology, Osaka International Cancer Institute, Osaka, Japan
² Department of Gastrointestinal Oncology, Osaka International Cancer Institute, Osaka, Japan

Correspondence to: Kei Kunimasa, MD, PhD, Department of Thoracic Oncology, Osaka International Cancer Institute, 3-1-69 Otemae Chuoku, Osaka City, Osaka, 541-8567, Japan

E-mail contact: kei.kunimasa@oici.jp
Disclosure Statement of Conflict of interest

Dr. Kunimasa reports honoraria for lecture from AstraZeneca, Chugai Pharma and Novartis.

Abstract

Effective control of severe immune-related adverse events (irAEs), including cytokine release syndrome (CRS), is essential for the success of immunotherapy. We present a case of a granulocyte colony stimulating factor producing pleomorphic lung carcinoma treated with nivolumab plus ipilimumab, which developed CRS and severe immune-related pneumonitis. The effect of immunotherapy was heterogeneous; gastric metastasis was eliminated, but the pulmonary lesion showed primary resistance. Steroid and tocilizumab were successful in controlling CRS, but additional infliximab was necessary to control pneumonitis. To control irAEs, it is important to choose immunosuppressive agents to the specific target organ and inflammatory cells.

Keywords: cytokine release syndrome, nivolumab, ipilimumab, pleomorphic carcinoma, immunosuppressive agent, case report
Introduction:

Cytokine release syndrome (CRS) is a potentially life-threatening toxicity that has been observed following the administration of immune-based therapies for cancer, including chimeric antigen receptor (CAR) T-cell therapy and immune checkpoint blockade treatments. CRS occurs either in the hyperacute phase, minutes to hours after the administration of these drugs, or in some days to two weeks following the proliferation of the administered T-cells(1). Herein, we present a case of a patient with pulmonary pleomorphic carcinoma treated with nivolumab plus ipilimumab who developed CRS with tumor progression. Tocilizumab, an anti-human IL-6 mAb, was effective in controlling CRS, while infliximab, an anti-human tumor necrosis factor α (TNFα) mAb, was necessary for controlling complicated pneumonitis. In the control of concurrent immune-related adverse events (irAEs), it may be necessary to use different immunosuppressive agents for different organs and inflammatory cells.

Case Presentation

A 64-year-old Japanese female, who is a 45 pack-year smoker, presented with fatigue and lightheadedness associated with severe anemia and leukocytosis (day.1). Upper endoscopy revealed a bleeding lesion in the stomach (Fig.1), and computed tomography (CT) scan showed a pulmonary mass in the right upper lobe. Histopathologic
analysis suggested granulocyte-colony stimulating factor (G-CSF)-producing pleomorphic carcinoma (Fig.1). She was finally diagnosed with pleomorphic carcinoma of the lung with clinical T2aN0M1b, stage IVB with no targetable driver mutations, and with a programmed cell death ligand 1 (PD-L1) tumor proportion score (TPS) of 60%. Nivolumab (360mg every 3 weeks) plus ipilimumab (1mg/kg every 6 weeks) was administered on day 21, and 20mg of prednisolone (PSL) was given for grade 2 immune-related skin rash on day 47. The bleeding gastric metastasis showed a tendency to shrink, while the pulmonary lesion showed primary resistance (Fig.2).

On day 88, she experienced sudden nausea and light-headedness, and was rushed to our hospital with signs of shock. An infiltrative shadow emerged in the left upper lobe (Fig.3B) and procalcitonin was increased to 70.29 ng/mL. Test for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) based on reverse transcriptase polymerase chain reaction (RT-PCR) using her nasal swab was negative. She was admitted to the intensive care unit (ICU), and empirical administration of broad-spectrum antibacterial agent was started with vasopressor agents. No infectious organisms were detected in the sputum and peripheral blood culture. With suspicion of CRS, we administered steroid pulse and tocilizumab therapy, which resulted in an immediate increase in blood pressure. However, the infiltrative shadow rapidly progressed, thus requiring ventilation management. The serum IL-6 and ferritin levels at admission were
25,100 pg/mL and 1440.8 ng/mL, respectively (Fig.3A). Although tocilizumab was administered for CRS, there was only temporary improvement in chest infiltration (Fig.3C) and oxygenation worsened. Changes in chest X-ray images and PaO$_2$/FiO$_2$ ratio from the administration of tocilizumab to the administration of infliximab are shown in (Supplementary Figure.1). Since the effect of tocilizumab was considered to be limited and the oxygen toxicity due to high oxygen concentration was concerned, infliximab was administered on day 92 after the investigation of bronchoalveolar lavage fluid (BALF). Thereafter, the infiltrative shadow rapidly disappeared within one week, and the patient was successfully weaned from mechanical ventilation (Fig.3A-C). After leaving the ICU, the patient showed signs of CRS again, was treated with tocilizumab, and was discharged on day 117 with mycophenolate mofetil. Two weeks after discharge, unfortunately she died at home due to tumor rapid progression.

Discussion

The patient developed CRS and severe immune-related pneumonitis along with tumor progression approximately three months after immunotherapy. The CRS improved with high-dose steroids and tocilizumab, but infliximab was necessary to control the pneumonitis. In the management of severe irAEs across multiple organs, the control of immuno-inflammatory cells in each organ may be required(2). Although immunotherapy
was successful in priming host immune cells, excessive stimulation by primary tumor progression may have caused these irAEs.

Duodenal metastasis of lung cancer is rare, accounting for 0.2~1.7% of cases(3). Metastases from pulmonary pleomorphic carcinoma have occasionally been reported(3-5). In this case, lung and stomach biopsies were performed respectively, and it was diagnosed as gastric metastasis of pulmonary pleomorphic carcinoma because of the identical histological type, high PD-L1 expression and the same rare G-CSF producing tumor (Fig.1).

Tumor-derived G-CSF possibly contributed to the development of severe irAEs(6). Since immunotherapy was ineffective in the primary lung lesion, G-CSF stimulation continued as inferred from the peripheral white blood cell count and C-reactive protein elevation (Fig.3A). CRS has been reported to occur relatively early after immunotherapy(1,7). However, the onset of CRS in the present case was delayed possibly due to its association with tumor growth. The use of G-CSF receptor blocker(8) for G-CSF-producing tumors may reduce the risk of irAE development in patients with the tumors.

CRS is recommended to be primarily managed with tocilizumab(1). The symptoms associated with CRS in this case were nausea, severe hypotension and respiratory failure(1,7). Although the blood pressure immediately responded to steroid pulse therapy,
the infiltrative shadow in the lung field did not improve, and tocilizumab was administered considering of CRS. Within two days, the expansion of the pulmonary infiltrative shadow and deterioration of oxygenation were observed (Supplementary Figure.1). The effect of tocilizumab for pneumonitis was thus deemed to be limited. Additional infliximab was administered after BALF investigation revealed numerous neutrophils instead of lymphocytes with no infectious organisms. Tocilizumab has been shown to be effective against CRS and may take several days to be effective(9). It is also reported to be effective against immune checkpoint inhibitor-related pneumonitis(10). In this case, since the infiltrative shadow in the lung field increased and the PaO$_2$/FiO$_2$ ratio decreased day by day after administration of tocilizumab (Supplementary Figure.1), infliximab was additionally administered. There was a report that infliximab was effective for steroid refractory immune checkpoint inhibitor-related pneumonia(11,12), and infliximab seemed to be a promising alternative to tocilizumab. It may be necessary to use different immunosuppressive agents depending on the irAE organ and the immune cell type that is the main cause of inflammation(2). Unfortunately, we were not able to measure cytokines other than IL-6 in this case, but the measurement of other cytokines including TNFα, may further guide the use of immunosuppressive agents.

Conclusion
The development of CRS and severe immune-related pneumonitis in the present case may have been due to G-CSF-produced from the tumor and the unleashed immune cells, which were further stimulated by tumor progression. We successfully controlled CRS with steroid and tocilizumab, and pneumonitis with infliximab. To control irAEs, it is important to choose immunosuppressive agents properly according to the specific organ and immune-inflammatory cells.

Acknowledgement: Informed consent was obtained from the patient.

References

Figure legends

Figure 1 Immunohistochemistry of tumors from the pulmonary and gastric lesions. The upper column shows the immunohistochemistry analysis of the pulmonary tumor (yellow circle). Hematoxylin-eosin stain showed poorly differentiated polymorphic cells with scattered spindle cells. The immunohistochemical staining showed that the tumor cells are negative for TTF-1 and p40 and positive for AE1/AE3 and G-CSF. The programmed death ligand-1 (PD-L1) tumor proportion score (TPS) using the 22C3 pharmDx assay is 60%. The lower column shows the immunohistochemistry analysis of the gastric tumor (yellow circle). Upper endoscopy revealed a bleeding gastric lesion. Hematoxylin-eosin staining showed poorly differentiated polymorphic cells with scattered spindle cells. The immunohistochemical staining showed that the tumor cells are negative for HNF4α and TTF-1, and positive for G-CSF. The normal gastric epithelium is positive for HNF4α. PD-L1 TPS using the 22C3 is 60% similar to the pulmonary tumor.
Figure.2 Serial images of the tumor. The upper column shows serial images of chest computed tomography (CT) scans. The primary pulmonary lesion was gradually increasing. CT scan at the 2nd admission showed infiltration in the left lung field. The middle column shows serial images of upper endoscopy. The bleeding gastric lesion was gradually decreasing. The lower column shows decreasing gastric lesion (yellow arrow heads) in abdominal CT scans. The three images in the same row were not taken on the same day but were taken at around the same times: at the first visit, about four weeks after administration, about eight weeks after administration, and at the second admission.

Figure.3 Clinical course and serial chest images. (A) The first visit was defined as day 1, and the course was followed from the second admission to the discharge on day 117. (B) Serial chest images from the second admission to extubation. The primary tumor in the right lung field was gradually increasing. The left infiltrative shadow was exacerbated from day 88 to day 90 and gradually subsided after infliximab administration from day 90 to day 100. The residual lung cavitated as a result of severe inflammation on day 100. (C) Serial chest x-ray images throughout clinical course.

Supplementary Figure.1
Serial changes in chest X-ray images and PaO2/FiO2 ratio from the administration of
tocilizumab to the administration of infliximab. PaO$_2$/FiO$_2$ ratio was calculated from ventilator oxygen concentration and arterial blood gas analysis data.
Fig. 1

HE TTF-1 AE1/AE3

p40 G-CSF PD-L1

G-CSF PD-L1

HNF4α

TTF-1

Journal Pre-proof
At the first visit

About 4 weeks after administration

About 8 weeks after administration

At the 2nd admission

Fig. 2
Fig. 3

(A) Graph showing changes over time with various medications and medical procedures.

(B) Images showing CT scans with annotations for specific days.

(C) Series of chest X-rays with dates corresponding to medical events.
CRedit Statement

Kei Kunimasa: Conceptualization, Methodology, Investigation, Writing — original draft,

Takako Inoue: Investigation, Writing — review & editing. **Katsunori Matsueda**: Investigation, **Takahisa Kawamura**: Investigation, **Motohiro Tamiya**: Investigation, **Kazumi Nishino**: Investigation, **Toru Kumagai**: Supervision